
Efficient Range Distribution Query for Visualizing Scientific Data

Abon Chaudhuri1, Tzu-Hsuan Wei1, Teng-Yok Lee1, Han-Wei Shen1, Tom Peterka2

1The Ohio State University∗
2Argonne National Laboratory†

ABSTRACT

Visualization applications implicitly run queries on the data to re-
trieve distributions and statistical measures derivable from distri-
butions. Distribution based data summaries can substitute for the
raw data to answer statistical queries of different kinds. However,
frequent access to the raw data is no longer practical, if possible
at all, for answering large number of queries on large-scale data.
Our work addresses the issue by accelerating range distribution
query, which returns the distribution of an axis-aligned query re-
gion. Maintaining the interactivity of such query results is a chal-
lenging task because the workload, which affects the response time,
of such queries scales up with the data and the query size. In this
paper, we present a framework for answering range distribution
queries for any arbitrary region in near constant time, regardless
of data and query size. We adapt an integral histogram based data
structure to bound the workload which is a combination of compu-
tation, I/O and communication cost. We propose two novel trans-
formations of this data structure – a decomposition and a similarity-
driven indexing – to reduce the huge storage cost associated with it.
In addition to studying performance of query, we also demonstrate
the benefits that our technique offers to visualization applications
which directly or indirectly require distributions.

1 INTRODUCTION

Query-driven techniques have become increasingly popular for ex-
ploring and visualizing scientific datasets. Statistical summaries
such as mean, standard deviation, entropy and higher order mo-
ments computed from distributions of spatial sub-ranges are useful
for feature extraction, uncertainty quantification, multi-resolution
analysis, and data reduction, just to name a few. Useful local statis-
tics are often derived from distributions commonly represented as
histograms. In general, such queries are known as range distribu-
tion query [14], which returns the distribution of an axis-aligned
query region of any arbitrary size. Traditionally, such queries are
supported by running a sequential scan through the raw data. How-
ever, as the data size grows, frequently accessing large subsets of
the raw data increases workload, which leads to slower query re-
sponse time. This is because both the time and space complexity
of such queries are proportional to the number of data points in the
query region.

The importance of range distribution query is apparent from its
wide use, directly or indirectly, in a number of visualization algo-
rithms [22, 17, 6] (explained in more detail in Section 2). Since the
approach of scanning raw data does not scale well with data size,
it is important to devise strategies to maintain the interactivity of a

∗The email addresses of Abon Chaudhuri, Tzu-HsuanWei, and Han-Wei
Shen are {chaudhua, weit, hwshen}@cse.ohio-state.edu. The email address
of Teng-Yok Lee is Teng-Yok.T.Lee@ieee.org.

†The email address of Tom Peterka is tpeterka@mcs.anl.gov.

distribution query engine. In this paper, we propose to transform the
raw data into a data structure which stores and uses pre-computed
distributions to answer distribution query for any range in logarith-
mic time in the worst case. However, we need to address two major
challenges to make this approach effective:

• Query workload: The workload of the query engine should
be low and constant regardless of the query size and data size.
The workload refers to a combination of the cost of access-
ing data in memory, the I/O cost associated with reading files
from the disk, if needed, and also the communication cost of
exchanging partial query results, if needed.

• Distribution storage: The number of pre-computed distribu-
tions required to answer range distributions queries is as large
as the number of data points. We must minimize the storage
cost of the pre-computed distributions so that the query can be
run on commodity desktops with moderate amount of storage.

To bound the query workload, we adapt a data structure called
integral distribution [19]. It is an extension of the summed area ta-
ble (SAT) proposed by Crow [5] which, at each location of the data,
stores the sum of the attribute values from the origin up to that lo-
cation. SAT can compute the sum of an attribute in any rectangular
region in constant time, regardless of the region size. Similarly, in-
tegral distribution can compute the distribution of any query region
by accessing pre-computed distributions only at the corner points of
the query region. Hence, the workload is bounded by the number
of corner points which is same for any query of any size.

The benefit, however, comes at the cost of huge storage cost. The
total space required to store an integral histogram is in the order of
O(N ∗K) for N data points and K number of bins per histograms.
This is prohibitively large even for data sets of moderate size. We
address this storage issue by proposing a set of transformations
to stored integral distributions to make them compression-friendly.
After the proposed transformations - a decomposition followed by
an indexing - are run on the integral distributions, any off-the-shelf
compression technique can be employed to achieve much higher
space saving. We propose the following transformations for inte-
gral distributions: First, we decompose them into a hierarchy of
block distributions pertaining to power-of-two length sub-ranges.
We propose a novel similarity-based indexing technique to be em-
ployed on these block distributions. These transformations lead to
significant space saving and much faster query performance.

2 RELATED WORK

Distribution-based Techniques: The use of distributions
in data analysis and visualization is ever-growing. Scien-
tific simulations often produce outcomes with uncertainty, mak-
ing a distribution-based approach the most suitable for post-
processing [22]. Sometimes the data itself come in the form of
distributions. For example, multi-run simulations generate ensem-
ble data which produce distribution of the outcomes from individ-
ual runs. To analyze data of this type, various algorithms that use
distribution queries have been developed. Examples include fuzzy

isosurface computation from uncertain data [22], and analysis of
uncertain vector fields [17]. Even for conventional data, Johnson
and Huang have proposed a distribution-based query to identify re-
gions having a certain type of distribution [10]. Similarly, Gosink et
al. have shown that distributions of sub-regions of varying sizes are
useful for feature extraction and segmentation [6]. Block level dis-
tributions have also been used in spatio-temporal data analysis [7].
ProbVis [20] is another distribution query engine. However, all
these methods access the raw data to compute and display distri-
butions whereas we aim at answering queries without having to
access the raw data. Hence, our method can extend any of these
query-driven techniques to large data when raw data access is not
recommended.

Distributions of scalar values and their attributes play a critical
role in designing transfer function for volume rendering [11, 13]
and predicting isosurface statistics [1, 3, 16]. Distributions are also
critical in information theory based visualization since local and
global distributions are needed to compute a suite of information
theoretic metrics [23].

Efficient Storage of Distributions: Exact query processing
on large databases became infeasible especially for certain appli-
cations such as online analytical processing (OLAP), giving way
to fast and approximate query return based on pre-computed dis-
tributions [2]. In another approach, histograms have been treated
as signals and various basis transforms such as wavelet [15] and
SVD [18] have been used to compress them. In visualization com-
munity, a recent work has proposed a statistical method of approxi-
mating histograms by Gaussian Mixture kernels to reduce the stor-
age overhead [12]. Another recent work has converted local dis-
tributions to sparse representations to reduce the overhead of com-
puting probabilistic mipmaps from gigapixel images [8]. Efficient
storage and retrieval of histograms is studied in other areas such as
computer vision [4] as well.

Similarity-based Methods: The presence of self-similarity in
various types of data has been used for feature detection, encod-
ing and other purposes. Shechtman and Irani [21] have utilized
self-similarity within an image and across multiple sequences in
a video frame to detect visual entities. Jacquin [9], introduced a
self-similarity based coding technique, known as fractal coding, for
images. In fractal coding, the image to be encoded is partitioned
into spatial blocks called range blocks (Rk). Another smaller set
of partitions, called domain blocks, of the same image is created to
serve as representative templates. The range block set is mapped to
the domain block set in such a way that the range blocks, and hence
the data can be reconstructed only from a set of iterative functions.

In this paper, we observe the great extent of similarity present
across distributions coming from the same data. and develop a
similarity-base matching framework for representing histograms in
scientific data sets.

3 PROPOSED FRAMEWORK

In this paper, we present a framework to rapidly return the distri-
bution of any arbitrarily large axis-aligned spatial region in a vol-
umetric data. When such queries are answered using the raw data,
the response time is a function of the size and shape of the query
region, which is manageable for relatively smaller data which fits
in memory. However, in most real applications, the data is too big
for memory and hence, is partitioned and stored in the disk as mul-
tiple blocks. In this case, not only the query region is too big for a
sequential scan, it spans across multiple data blocks, requiring nu-
merous files to be loaded to answer it. As a result, the time required
to scan the data as well as the I/O cost associated with loading these
data blocks add to the query workload. Figure 1 (left) schematically
presents the problem. Moreover, if the data blocks are loaded in dif-
ferent processors in a distributed memory system, communication

Figure 1. Left. Traditional raw data access method of answering range distri-

bution queries where compute time, i/o and communication time are functions

of query size. The blocks to be loaded to answer a query (red rectangle) are
shaded in blue. Right. Proposed integral distribution approach only needs to

probe the 4 (8 in 3D) corners of a query region to answer it. Query response

time is fixed regardless of query size.

Figure 2. Overview of the proposed framework for transformation and storage
of integral distribution volume.

is needed among processors to aggregate the locally computed par-
tial distributions. This communication cost also adds to the work-
load which is reflected in the response time.

Our framework offers the ability to answer such a range distribu-
tion query in near constant cost (in terms of computation time, I/O
and/or communication cost), regardless of the query region size. As
outlined in Figure 1 (right), our framework can answer any query

by probing only the 2d corner points (8 for 3D) of a d-dimensional
query. Hence, the I/O cost is bounded by that of 8 blocks and at
most 8 communications are needed.

To give an overview, our framework, outlined in Figure 2, trans-
forms the raw data into a data structure called Integral Distribu-
tion Volume (IDV). Since direct computation of IDV is slow and
space-consuming for large data, we propose a scheme to compute
the integral distribution of any location from a hierarchy of reusable
block-level distributions. The high storage cost associated with IDV
is reduced by applying a template-based encoding technique on the
block-level distributions. Also, we allow the user to trade accuracy
for speed by selectively using or discarding block-level distribu-
tions while answering query.

Our proposed framework is explained in following stages: repre-
sentation of integral distribution by power-of-two lengths sub-range
distributions, indexing of these sub-ranges followed by compres-
sion, and finally, interactive retrieval and reconstruction of range
distributions.

3.1 Integral Distribution Volume (IDV)

Given an Nx ×Ny ×Nz 3D field f : R3 → R, its integral volume
I f stores at each location the aggregate of the attribute value from
origin to that location. Mathematically speaking,

I f = {I f (x,y,z) : x ∈ [1,Nx],y ∈ [1,Ny],z ∈ [1,Nz]}, where

I f (x,y,z) =
z

∑
k=1

y

∑
j=1

x

∑
i=1

f (x,y,z)

In other words, the integral volume stores the range prefix sums of
f at each data point. As a result, the aggregate of f over any range
Q can be obtained by a finite number of addition and subtractions
of the prefix sums at the corners of Q [5, 19].

Integral Distribution Volume is an extension of the above idea to
histograms. Given an Nx×Ny×Nz 3D field, its integral distribution
volume (IDV) stores at each location the integral histogram, which
is the distribution of the sub-field spanning from the origin to that

location. The IDV of a volume under K-bin histogram representa-
tion is defined as:

IDVf = {H(x,y,z) : x ∈ [1,Nx],y ∈ [1,Ny],z ∈ [1,Nz]}, where

H(x,y,z) denotes the integral histogram at (x,y,z). The distribution
of any 1D range [A,B], denoted by h([A,B]), is obtained by using
the integral distributions H(A) (same as h([1,A])) and H(B) (same
as h([1,B])): h([A,B]) = H(B)−H(A). In higher dimensions, the
query is defined by more than two points (4 points in 2D, 8 in 3D for
example). Hence, the distribution of a d-dimensional query range

{Ai : i= [1,2d]} is retrieved by the following steps: H(Ai) for each
corner point Ai are accessed from IDV; H(i)s are added or sub-

tracted to obtain h({Ai : i= [1,2d]}).

3.2 Transformation to Sub-range Distributions

The benefit of near constant time query of IDV comes at the cost
of huge storage cost - O(Nx ×Ny ×Nz ×K). Instead of directly
applying an off-the-shelf compression to IDV, we propose to first
decompose it into a number of sub-ranges and their distributions for
two reasons. First, these sub-range distributions can be repeatedly
used to reconstruct the integral distribution at any location on the
IDV. Second, compressing the sub-range distributions leads to more
space-saving than directly compressing the IDV.

Figure 3. Fast algorithm to de-

compose a range into power-of-two
length blocks.

Martin and Shen [14] ob-
served that given any 1D
point P, the integral distribu-
tion H(P) can be computed
by combining log2P or less
number of sub-range distri-
butions from [1,P], where
each sub-range has a power-
of-two length. Suppose,
S(P) denotes the set of
power-of-two sub-ranges for
a point P. In this paper, we
propose a fast bitwise operation based algorithm for computing
S(P) for any P. The steps of the proposed algorithm are:

1. The rightmost non-zero bit of the binary representation of P
is set to zero to obtain P′ (P′ < P)

2. [(P′+1),P] is included in S(P) as the next sub-range
3. Steps 1 and 2 are recursively applied on the residual, (P−P′)
4. The recursion stops when P′ = 0

Figure 3 demonstrates the algorithm with an example. Starting from
P= 25 which is 11001 in binary, we follow the above steps to gen-
erate the following numbers in sequence: 11000 (24), 10000 (16)
and 00000 (0). Hence, the resulting sequence of sub-ranges are
(25,25), (24,17) and (1,16).

When P is a higher dimensional point, the 1D blocks for each
of its dimensions are first computed. Then, another iteration is per-
formed to combine them into a set of higher dimensional power-of-
two length blocks. Hence, S(P(x,y,z))= S(x)×S(y)×S(z). For ex-
ample, S(5) contains (1,4) and (5,5); S(4) contains (1,4). Hence,
the decomposition of the 2D point (5,4) consists of the following
2D sub-ranges: {(1,4),(1,4)} and {(5,5),(1,4)}.

Integral distributions of nearby points share sub-ranges between
them. For example, S(4) contains (1,4), which also appears in S(5)
which is {(1,4),(5,5)} and S(6) which is {(1,4),(5,6)}. Hence,
after running the above algorithm for entire range from 1 to P, we
discard the duplicate blocks and retain the union of all minus the
duplicates.

Conceptually, the sub-ranges are nodes of a space-partitioning
tree. In 1D, they come from a binary tree which partitions the range
[1,P]. Now, it turns out that storing every alternate sub-range at
each level of the binary tree is sufficient to reconstruct H(P) for any

Figure 4. Transformation of a 1D integral distribution. Only the distributions
of the ranges colored in gray are sufficient to construct the distribution of any

arbitrary range.

arbitrary P. To give an example, Figure 4 shows using blue arrows
how a query range (4,13) can be reconstructed using sub-ranges.
H(13) is reconstructed from (1,8),(9,12) and (13,13) and H(3) is
computed using (1,2) and (3,3). Figure 4 shades the blocks which
are sufficient to reconstruct any integral distribution in the range 1
to 16. In 2D or 3D also, the number of sub-ranges to be retained is
same as the range itself. In other words, given a dataset of dimen-
sion N3, distributions of N3 sub-ranges from a space-partitioning
tree are to be retained.

The above transformation of IDV creates a set containing same
number of sub-range distributions as the IDV does. However, these
sub-range distributions are non-integral, and hence can be com-
puted much faster. More importantly, most sub-ranges represent
small spatial regions (half of them only contain 1 data point), and
are likely to have a very small number of non-zero bins. So they
can be stored much more compactly and lend themselves more eas-
ily to various compression schemes. When we need to store non-
normalized distributions, the range of frequencies of the sub-range
distributions is much smaller compared to the original integral dis-
tributions. This also leads to better compression.

3.3 Indexing of Sub-Range Distributions

We propose to index the sub-range distributions in such a way that
the indexed distributions lead to even more space saving under any
standard compression algorithm. In essence, the set of sub-range
distributions, denoted by B, is indexed by amuch smaller set of tem-
plate distributions, denoted by T , which represents different types
of distributions in the dataset. The proposed algorithm finds a map-
ping Θ : B → T from each element hi(B) of B to one or more el-
ements of h j(T) of T . At the end, B is discarded; only the map
and the template set is retained. Since B >> T , this reduces the
storage cost. In the query phase, the required elements of B are re-
constructed using the map and their images in T . Figure 5 presents
a schematic overview of the indexing algorithm.

Figure 5. Overview of the indexing
algorithm, where sub-range distribu-

tions, grouped based on their sizes,

find an approximate match from a much

smaller set of template distributions.

A template based index-
ing performs well if the
elements of B are simi-
lar to each other so that
many of them are indexed
to one template. This re-
duces the number of el-
ements to retain from T
and hence, reduces the to-
tal storage cost. In our
case, the created sub-range
distributions can be seen as
a group of sub-ranges of
varying sizes (in terms of
number of voxels it covers) such as the ones containing 1, 2, 4 or 8
voxels and so on (B1, B2 etc. in Figure 5). Having such a grouped

Figure 6. Proposed strategy for template creation. Regions of length B at
regular intervals are chosen as templates in the first iteration. Region length is

increased and the interval is decreased in subsequent iterations.

structure is beneficial for our next step which is grouping the similar
ones. An integral distribution volume in its original form would not
contain such groups, since every integral distribution would come
from a different-sized sub-range.

3.3.1 Construction of Templates

In our formulation, the distributions to be encoded (set B) come
only from power-of-2 length sub-ranges. This is why we create a
similarly structured yet much smaller set of template distributions T
from power-of-2 length sub-ranges obtained from a downsampled
copy of the data. Spatially smoothed downsampled data is used so
that the local features and noises do not bias the templates. The
templates are created using the following steps:

1. The data is downsampled by one level using a standard spatial
smoothing technique. We start with an empty set T .

2. The downsampled data domain is decomposed into non-
overlapping partitions of length B where B is a power of two.
We have started with 4 as the initial value of B.

3. Every k-th partition along each dimension is selected (where
k denotes stride) and its distribution is included in a set Tb

4. Tb is added to T

5. Steps 2 and 3 are repeated with a double length and a half
stride, i.e., b = 2×b and k = max{k/2,1}. This is done until
B is nearly half as the full data range.

Figure 6 presents a schematic view of the algorithm. This algorithm
populates T only with power-of-two sub-ranges of different sizes.
Like B, the template set also contains groups coming from same-
sized templates (as shown by T8, T16 in Figure 5). This makes it fit
for indexing the hierarchy of power-of-two sub-range distributions
B. Even though a sub-range distribution is free to index against any
template coming from any region in the spatial domain, it is more
likely to find a match from the subset coming from sub-ranges of
equivalent size in the downsampled data.

3.3.2 Mapping between Sub-ranges and Templates

Algorithm: The next step is to create the map Θ : B→ T . For
each sub-range histogram hB, the goal is to find a template which
best approximates it. However, since |T |<< |B|, a hB may not find
a good match in T . Thus, we allow each template to undergo a set
of transformations to virtually expand the set of templates available
for each hB. The template which best approximates a sub-range his-
togram under some transformation becomes the index of that sub-
range. Hence, the mapping can be expressed as following:

Θ(hi(B)) = { j,τ}, if ∆(hi(B),τ(h j(T))is minimum∀ j

where τ represents the transformation of a template and ∆ repre-
sents the difference between the sub-range histogram and the trans-
formed template.

Transformations: We observed that circular shift and reflec-
tion form a suitable set of transformations for the templates. These
two capture all possible shifts of the bins, while preserving the rel-
ative order. The intuition behind choosing these transformations is

(a) Intuition behind circular shift and reflection.

(b) Peak matching followed by local alignment

Figure 7. (a) Schematic presentation of chosen transformations for histograms.
(b) Fast shift and reflection through peak matching and local adjustment.

twofold. First, circular shift corresponds to change of location in
the data space. In a volume data composed of multiple materials,
when we move from one uniform zone A, made of one material, to
another zone B made of a different material, the data values shift
and so does the histograms (h(A) shifts to h(B) as in Figure 7a).
Second, data sets also contain regions with gradually changing val-
ues. Change of location in such regions corresponds to reflection
of histograms. For example, in Figure 7a, the histograms of C and
D can be transformed though reflection followed by translation. In
case of a 1D histogram with K bins, the shifts are produced by
shifting every bin to its right by one step at each iteration. The
rightmost bin is circularly brought back to the leftmost bin. Then,
if necessary, the histogram is reflected so that for each i, f (i) be-
comes f (K− i). Then K circular shifts are applied on the reflected
histogram. Hence, K or 2×K transformations can be produced for
each template.

Implementation: Given a sub-range, examining all possible
transformations for all templates can be prohibitively slow. In prac-
tice, we use a reduced search space. First, we first perform a shift to
align the modes (bin with highest frequency) of the sub-range and
the template histogram. In the next step, we generate a few more
transformed configurations of the template by shifting it only by a
few steps (we used 3) in both directions about the mode (Figure 7b
right). Hence, total number of transformations that a template goes
through comes down to (1+7) or 2× (1+7) if reflection is used.

Under each transformation, the transformed template histogram
is compared against the sub-range distribution under consideration.
We have used L2-norm for this comparison. L2-norm is ΣK

i=1d
2
i ,

where di represents the difference between the frequencies at ith

bins of two histograms under consideration. After the sub-range
has been compared with all templates and all transformations, the
<template,transformation> pair leading to minimum L2-norm (∆)
is stored. Hence, transformation τ(h) involves two pieces of in-
formation: the amount or shift nR, and a boolean flag bR denoting
if reflection is needed. We also store the residuals - the bin-wise
frequency differences between the block distribution and template
chosen for it.

3.3.3 Compression of Indexing Results

The output of the above two steps is a <template,transformation,
residual> triplet for each sub-range distribution. Due to indexing,

each of these three components has become friendly to compres-
sion. The template id can take values only within the range 0 to
(|T |− 1), which is not large. The rotation amount can vary only
between 0 and (K− 1), if K bins are used. The reflection flag is
only 0 or 1. Most importantly, the residuals are likely to be zeros
or very small numbers since the it has already been aligned with a
transformed template to minimize frequency differences.

We store each of these information in separate files. They can
be compressed using any off-the-shelf compression technique. We
have experimented with a few lossless compression schemes such
as LZ [24] and bzip2. However, our work is not tied up to any
particular compression technique, we have focused on increasing
the compressibility of the data in general.

3.4 Range Distribution Query

To answer a range distribution query for region Q, we first obtain
the integral distribution - H(Qi) - at each corner point Qi of the
query. To get H(Qi), we need to access and de-compress the code-
book of the block that contains Qi. We subdivide the range [1,Qi]
into a set of sub-ranges denoted by S(Qi) = {q1,q2, ...,q} using the
algorithm described before. Distribution for each qi is retrieved
from the codebook. The decoding phase also requires the set of
template distributions T to be loaded. Retrieval of a h(q j) from the
codebook involves the following steps:

1. The codebook is used to retrieve the index to a template, say
k and a transformation τ

2. Template histogram hk(T) is retrieved from template set T

3. The transformation is applied to the template histogram to ob-
tain τ(hk(T))

4. The stored residuals δ for this mapping is retrieved, decom-
pressed if needed, and applied to obtain h(q j)= τ(hk(T))+δ .

Addition of all h(q j)s results in H(Qi), which eventually leads to
H(Q).

Hence, our framework reduces the application workload in two
ways. First, the query requires to access only eight corners, re-
gardless of the query size. If the indexing results fit in memory,
then it limits the memory access. If the indexing results for each
data partition has been stored in compressed files, then it limits the
number of disk accesses. Second, the retrieval of each corner distri-
bution involves addition of a small number of sub-ranges, and then
adding/subtracting corner histograms. Since the number of sub-
ranges at any location x is at most logx, the computation required
is less compared to raw data scan for large queries.

Also depending on their sizes, sub-ranges contribute differently
to the resulting integral histogram. For example, the sub-range
(65,65) of size 1 contributes much less than the sub-range (1,64)
to the integral histogram of 65. The user can exploit this principle
to optimize query performance. We allow the user to select a trun-
cation threshold T . All sub-ranges having number of element less
than are discarded T while reconstructing an integral histogram.
T = 0 leads to exact reconstruction. T > 0 results in approximate
results. The smaller sub-ranges contribute less, but they are large in
number, so discarding the smaller ones reduces the memory access
and hence response time.

4 APPLICATIONS

The proposed technique benefits any visualization application
which implicitly runs range distribution queries on the data. Appli-
cations mainly run three types of distribution queries: First, while
interactively exploring the spatial domain, the user places queries in
random locations and sizes in no particular order. Second, a number
of applications partition the data into blocks and require the distri-
butions of each block as a substitute of downsampled data. Third,
Some applications compute and analyze distributions at every voxel
based on a small neighborhood around it. Our method seamlessly

(a)

(b) (c) (d)

Figure 8. Local statistical analysis at different levels of detail. (a) Accurate
and approximate reconstruction of block-wise mean field of Isabel pressure,

(b) relative amount of memory access (in terms of sub-ranges access), (c)

relative computation time, and (d) accuracy (measured by RMS error) of local
statistical analysis at different levels of approximation.

integrates with any visualization application which falls in one or
more of the above three categories.

4.1 Analysis of Local Statistics

Local statistics such as mean, variance and information entropy [23]
are computed from block level distributions, or from distributions
computed based on a local neighborhood at each point. Computa-
tion of such queries across large domains is expensive, and needs
multiple access to data if the user wants to interactively change the
level of details - either the block size, or the neighborhood size. On
the other hand, our method can quickly recompute the distributions
and the desired metric if the level of detail is changed. Left of Fig-
ure 8a shows such a mean field computed using our method from
83 blocks of Isabel Pressure field.

The middle and right images of Figure 8a show how our method
can also generate approximate yet fairly accurate statistic fields
while using much less query workload in terms of memory and de-
coding time. This enables quick analysis of larger datasets. We
have generated this mean field at different truncation levels T be-
tween 8 and 64 and compared the query performance against the
exact (T = 0) query result. Figure 8a shows how the memory foot-
print, measured by the number of sub-ranges accessed during re-
construction, falls off with T . At T = 64, the query is answered
only using 25% of the sub-ranges. As expected, the distribution
computation time goes down as well (Figure 8b). The I/O time (not
shown) would go down as well if different sub-ranges are organized
in different files. In addition to showing that the approximated field
is visually similar to the accurate one even at T = 64, we present in
Figure 8c the average RMS error for each level of approximation,
compared with respect to the accurate mean field.

4.2 Feature Detection with Fuzzy Isosurfaces

Blockwise distribution queries are used in many other applications.
To give an example, Thompson et. al. [22] has shown that fuzzy
isosurfaces computed from block-level distributions retain the main
features present in the original data. When raw data is not avail-
able, their technique computes a likelihood value for each block for
a given isovalue. However, the user often needs to visualize these
likelihood values for different size blocks. This either requires re-
peated data access to compute distributions for blocks of varying
sizes, or requires storing of pre-computed block distribution hierar-
chy for a range of sizes. Both are impractical for large data.

In this situation, our method can retrieve the block distributions
for any level of detail on demand, without touching the raw data

Figure 9. Block distribution-based fuzzy isosurface computation from Isabel

Pressure field. Left. True isosurfaces. Top Right. Likelihood field for +100 Pa.

Bottom Right. Likelihood fields for -500 Pa.

Figure 10. Top. Distribution-based search for different patterns on Solar Plume

dataset (using a 93 local neighborhood). A commonly occurring distribution (top

left), and a sparsely present distribution (top right) used as template. Bottom.

Distribution-based search for locations with stoichiometric mixture rate of 0.42
on time step 118 of combustion dataset (using a 73 local neighborhood).

and having to store a large number of distributions. We have shown
an example using the pressure field of hurricane Isabel dataset. Ac-
cording to previous research [6], pressure values less than -350 Pa
correspond to the hurricane eye. The top image in Figure 9 shows
the true isosurface for isovalue -500 Pa, (blue surface), which sur-
rounds the hurricane eye, and the isosurface for +100 Pa (orange
surface), which spans a large area outside the eye. The bottom row
contains the likelihood field for isovalues -500 Pa (left two) and
+100 Pa (right two) computed from block sizes 4, and 12.

4.3 Distribution-based Similarity Search

The third application is an example of pointwise range distribution
query. When the user does not know the exact isovalue to look for,
it is more convenient to place the query in the form of a distribu-
tion, a Gaussian kernel centering at the best estimated isovalue or
a Gaussian mixture for example. Also, some features are charac-
terized by a particular type of distribution by the domain experts In
such a context, a fuzzy similarity score proposed by Johnson and
Huang [10] indicates the similarity between the user-input distribu-
tion and a local neighborhood based distribution at each voxel. The
resulting similarity field has a score range from 0 to 1, 1 indicating
the best match. However, whenever the user changes the neighbor-
hood size to be used for search, this method has to re-compute the
distributions at each voxel. This is why our method can enhance
such a search by providing the ability to reconstruct the local distri-
butions of different neighborhood sizes on the fly.

Table 1. Size of test datasets and the storage cost of corresponding IDVs (64

bins)

Dataset Resolution IDV Size (GB)
Plume 126×126×512 3.29
Isabel 250×250×50 1.49

Combustion 240×360×60 2.47

Figure 10 top row shows two examples of distribution based
search on Solar Plume. The query for the top image (distribution
shown in inset) is a more common one, so most voxels of the re-
sulting field have higher similarity score (red or orange) and only
a few regions are dissimilar to the query (shown in blue). On the
contrary, the query distribution for the bottom image is a Gaussian
mixture where both Gaussians are centered at less probable val-
ues. Hence, most of the voxels in the similarity field are 0 or close
to 0 (shown in blue). We have modulated the opacity to highlight
the two small regions corresponding to the two Gaussian peaks in
the query. Figure 10 bottom shows a distribution query on mixture
fraction variable of Combustion data. We have used a Gaussian
distribution centered at 0.42 as the query. The high similarity zones
in the search result (red, right image) correspond well to the flame
extinction zones (value ∼0.42) in the raw data (red, left image).

5 QUANTITATIVE ANALYSIS

In this section, we study the reduced storage cost and query work-
load achieved by our framework, and compare our technique with
alternate approaches.

Datasets: Table 1 lists the sizes of the datasets used in our
experiments. It also presents the size of the integral distribution
volume to highlight the huge storage cost associated with it.

Assuming that loading the entire IDV to memory is not permissi-
ble for actual large datasets, we have partitioned these datasets into
1024 blocks and performed both the pre-processing and the query
in parallel on blocks. Our primary focus is not on the parallelism.
But we have worked with partitioned data to make our algorithm
independent of total data size.

Alternate Methods: In terms of storing IDV, we have com-
pared against direct compression of IDV using any off-the-shelf
compression scheme. As a second alternative, we have run the
proposed indexing algorithm directly on the IDV, bypassing the de-
composition into power-of-two length sub-ranges, and compressed
the indexing output. This alternative is presented to justify the im-
portance of the decomposition step in our framework. Finally, we
have results from our method which performs decomposition into
sub-ranges, then indexing of sub-ranges and finally, compression.

The third stage – compression – works with any compression
scheme. We have presented results using standard implementations
of LZ (Lempel-Ziv) [24] and bzip2 algorithms. Our work does not
recommend any particular compression algorithm though. Our ob-
jective is to transform IDV, which is originally not easy to compress,
to an easily compressible form.

In terms of query performance, we have first compared against
raw data access method, which is a simple load-and-filter approach.
Given a range query, each data block that falls within the query is
loaded from disk and scanned to compute the partial or full distribu-
tion. All these partial distributions are then combined to obtain the
final query result. We have also compared against direct query of
integral histogram method. In this case, we have retrieved the query
distribution from the pre-computed and stored integral histograms
of query corners. With no decoding involved, this one should be
faster, albeit with an elevated storage cost.

(a) (b)

Figure 11. Compression rates of our method (right bars in each group) and

two other methods: direct compression of IDV (left bars) and compression

after direct indexing of IDV (middle bars).

5.1 Space Saving

The primary benefit of our method is that it enables the use of in-
tegral distributions with reduced storage cost. Each sub-range his-
togram is represented by an index to the corresponding template in a
codebook, an integer and a boolean variable representing the trans-
formation. The residuals of all sub-range histograms can be further
compressed with conventional algorithms such as LZ or bzip2 since
most of the bins in the residuals are zeros or small numbers.

It is noteworthy that our implementation divided the data into
blocks so each block can be indexed and queried in parallel. For
each block, the indices and the transformations for the sub-range
histograms are stored in its own codebook. Only one set of tem-
plates is used for all blocks. The number of templates to be stored
for Plume, Isabel and Combustion data are 403, 249 and 269, re-
spectively, which are negligible compared to the total number of
sub-range histograms. It should also be noted that for each block,
we store the integral histograms of the boundary layers to its neigh-
boring blocks so that the global integral histogram can be computed
without recursively accessing the span histograms in other blocks.

Figure 11 presents the compression rates obtained by our method
and compares it against two other techniques. The compression
rates are measured with respect to the storage cost of the actual IDV.
For each group, the leftmost bar indicates the space saving achieved
when the IDV is directly compressed using a lossless compression
technique such as LZ and bzip2. The middle bar in each group
is the result of skipping the sub-range transformation and directly
running our indexing algorithm. However, the results indicate that
the original distributions from IDV do not lend themselves very
well to an indexing algorithm. This justifies the necessity of the
transformation into sub-ranges. Finally, we show that our method,
combining transformation, indexing and compression, leads to very
high compression rates (the rightmost bars in each group).

5.2 Query Response

According to our hypothesis, the performance of query in our
method should not depend on query size, as we use integral his-
togram. We have tested this hypothesis by varying the query size
from 163 to 803. For each query size, we have used a set of 2000
queries coming from different locations of the data. The perfor-
mance numbers are based on an Intel(R) Core(TM) i7-2600 3.4GHz
quad-core processor with 16GB memory. For all our experiments,
each dataset is partitioned into 1024 blocks, and the query is com-
puted on 8 processors in parallel. As the integral histograms can be
large, our implementation loads the blocks needed for each query
from disks on the fly.

Figure 12 depicts the performances of raw data access, direct
query of integral histograms, and our approach. It shows that as
the query lengths increase, the performance of our method and in-
tegral histograms are stable, while both the I/O and CPU time taken
by raw data access method varies linearly with query size. Mean-
while, as expected, our approach is slower than directly querying in-
tegral histograms because our approach requires an additional step

(a) (b) (c)

(d) (e) (f)

Figure 12. Performance analysis of query response for different query sizes

and different datasets. The y axes in logarithmic scale. The tested algorithms
are raw-access (!), integral histograms (©), and our approach (*).

Table 2. Performance analysis of different stages of pre-processing (run on 8

processors in parallel). All times are in seconds.

Dataset
Template
Creation

Sub-range
Decom-
position

LZ BZ2

Plume 0.26 0.09 77.49 256.02
Isabel 0.07 0.04 188.59 194.77

Combustion 0.09 0.07 173.899 204.262

to decode and combine the sub-range distribution back to integral
distributions. Nevertheless, as our approach requires much smaller
storage than integral histograms (as already shown in Figure 11), it
is suited for large datasets.

5.3 Performance Study

Figure 13. Performance anal-

ysis of indexing of power-of-
two sub-range distributions for

Plume (*), Isabel (©), and

Combustion (!). Each is par-
titioned into 1024 blocks.

We have parallelized both the pre-
processing and the query stages
by partitioning the data into
blocks and distributing the blocks
across many processors. The pre-
processing is easily adaptable to
a parallel framework. In a paral-
lel setting, each processor simul-
taneously computes its own list of
templates based on the blocks as-
signed to it. A global list of tem-
plates is then created by accumu-
lating the local lists. The global
list is then distributed back to ev-
ery processor. A global list is
used for indexing because even if
two blocks are spatially far apart,
they may contain similar distributions. After template creation,
each data block is decomposed into sub-ranges and then indexed in
its own local co-ordinates space. To compensate for this local trans-
formation, the integral distributions (in global coordinates space)
for the corner point, three faces and three edges of the preceding
blocks are also stored. Table 2 presents the running times of these
stages and the compression time.

The main indexing algorithm is computationally expensive since
it compares each sub-range against each template. We have tested
the scalability of this stage on Surveyor, an IBM BG/P supercom-
puter at Argonne National Laboratory. Surveyor contains 1024
quad-core nodes, 2TBmemory and utilizes the General Parallel File
System (GPFS). Figure 13 shows that the indexing performance
scales well with number of processors for all three datasets

6 DISCUSSION

In essence, we propose transformations to the raw data to make it
more compressible. The user should choose the right compression
technique depending on whether speed or storage is more critical
in the query phase. For example, a method with lower compression
rate and faster decompression time (such as LZ) may suit interac-
tive visualization applications, while a slower algorithm produc-
ing better compression such as BZ2 is more useful for generating
static fields and images from very large data. Figure 11 allows us to
compare compression rates of the two techniques we experimented
with. bzip2 provides slightly better compression than LZ at the cost
of performance (Table 2). The user can increase the compression
levels (1 used) to save more space at the cost of time.

We have presented query performance without the decompres-
sion time. This is because our IDV size is 64 times the data size (64
bins used), and the codebook size (about 1% of the IDV) is smaller
than even the raw data. Hence, under the same available resources,
either both raw data and codebook can be loaded uncompressed, or
both need to be decompressed. With our method, only a few loca-
tions are to be decompressed and read from the codebook of each
block. On the other hand, full data blocks, or significant fractions
of them are to be decompressed to access raw data.

For time-varying datasets, we observed that the sub-range his-
tograms coming from subsequent time steps can be indexed with
high space-saving using templates from the first time step only. For
29 time steps of solar plume data, the space saving (computed in-
dividually for each time step) falls gradually, but stays well above
90%. This result indicates that the assumption of distributions be-
ing similar to each other holds across time steps as well.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a technique to support arbitrary range dis-
tribution query on volumetric data. Our proposed technique allows
answering such queries while keeping the query workload and the
associated storage cost very low, regardless of data and query size.
Any visualization algorithm which needs distributions from differ-
ent regions benefits from the proposed technique.

The proposed technique opens up many future directions. For
example, similarity-based indexing should apply to higher dimen-
sional distributions computed frommulti-variate datasets. In the 2D
case, the sub-range histograms themselves become image patches
which also contain redundancy and self-similarity. With suitable
adaptation to the transformation techniques, our technique should
be useful for 2D or higher dimensional histograms as well. Another
possible direction is to generalize the method for query regions of
arbitrary shape. The challenge lies in approximately decomposing
arbitrary shapes into a minimal set of axis-aligned queries to utilize
integral histogram based methods. Besides, we also plan to support
such query processing on GPU.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant IIS-1017635, IIS-
1065025, US Department of Energy DOE-SC0005036, Battelle
Contract No. 137365, and Department of Energy SciDAC grant
DE-FC02-06ER25779, program manager Lucy Nowell. We would
like to thank the anonymous reviewers for their sincere feedback.

REFERENCES

[1] C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In
Vis ’97: Proceedings of the IEEE Conference on Visualization, pages
167–173, 1997.

[2] F. Buccafurri, D. Rosaci, L. Pontieri, and D. Sacca. Improving range
query estimation on histograms. In ICDE ’02: Proceedings of the In-
ternational Conference on Data Engineering, pages 628 –638, 2002.

[3] H. Carr, B. Duffy, and B. Denby. On histograms and isosurface statis-
tics. IEEE Transactions on Visualization and Computer Graphics,
12(5):1259–1266, 2006.

[4] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, Y. Reznik,
R. Grzeszczuk, and B. Girod. Compressed histogram of gradients:
A low-bitrate descriptor. International Journal of Computer Vision,
96(3):384–399, 2012.

[5] F. C. Crow. Summed-area tables for texture mapping. In SIGGRAPH
’84: Proceedings of the Conference on Computer graphics and inter-
active techniques, pages 207–212, 1984.

[6] L. Gosink, C. Garth, J. Anderson, E. Bethel, and K. Joy. An appli-
cation of multivariate statistical analysis for query-driven visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics,
17(3):264–275, 2011.

[7] Y. Gu and C.Wang. Transgraph: Hierarchical exploration of transition
relationships in time-varying volumetric data. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2015 –2024, 2011.

[8] M. Hadwiger, R. Sicat, J. Beyer, J. Krüger, and T. Möller. Sparse pdf
maps for non-linear multi-resolution image operations. ACM Trans-
actions on Graphics, 31(6):133:1–133:12, 2012.

[9] A. Jacquin. Image coding based on a fractal theory of iterated contrac-
tive image transformations. IEEE Transactions on Image Processing,
1(1):18 –30, 1992.

[10] C. Johnson and J. Huang. Distribution-driven visualization of volume
data. IEEE Transactions on Visualization and Computer Graphics,
15(5):734–746, 2009.

[11] G. Kindlmann and J. Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. In VolVis ’98: Proceedings of
the IEEE Symposium on Volume Visualization, pages 79 –86, 1998.

[12] S. Liu, J. Levine, P.-T. Bremer, and V. Pascucci. Gaussian mixture
model based volume visualization. In LDAV ’12: Proceedings of the
IEEE Symposium on Large Data Analysis and Visualization, 2012.

[13] C. Lundstrom, P. Ljung, and A. Ynnerman. Local histograms for de-
sign of transfer functions in direct volume rendering. IEEE Transac-
tions on Visualization and Comp. Graphics, 12(6):1570 –1579, 2006.

[14] S. Martin and H.-W. Shen. Transformations for volumetric range dis-
tribution queries. In IEEE Pacific Visualization Symposium, 2013.

[15] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for
selectivity estimation. SIGMOD Rec., 27(2):448–459, 1998.

[16] S. Nagaraj and V. Natarajan. Relation-aware isosurface extraction in
multifield data. Visualization and Computer Graphics, IEEE Transac-
tions on, 17(2):182–191, 2011.

[17] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3d vector
fields. In PacificVis ’11: Proceedings of the IEEE Pacific Visualization
Symposium, pages 67 –74, 2011.

[18] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the at-
tribute value independence assumption. In VLDB ’97: Proceedings of
the International Conference on Very Large Data Bases, pages 486–
495. Morgan Kaufmann Publishers Inc., 1997.

[19] F. Porikli. Integral histogram: a fast way to extract histograms in
cartesian spaces. In CVPR ’05: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, volume 1, pages 829 –
836, 2005.

[20] K. Potter, R. M. Kirby, D. B. Xiu, and C. R. Johnson. Interactive
visualization of probability and cumulative density functions. Inter-
national Journal of Uncertainty Quantification, 2(4):397–412, 2012.

[21] E. Shechtman andM. Irani. Matching local self-similarities across im-
ages and videos. In CVPR ’07: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[22] D. Thompson, J. Levine, J. Bennett, P.-T. Bremer, A. Gyulassy, V. Pas-
cucci, and P. Pebay. Analysis of large-scale scalar data using hixels.
In LDAV ’11: Proceedings of the IEEE Symposium on Large Data
Analysis and Visualization, pages 23 –30, 2011.

[23] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic frame-
work for flow visualization. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1216 –1224, 2010.

[24] A. Ziv, J.; Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

	Introduction
	Related Work
	Proposed Framework
	Integral Distribution Volume (IDV)
	Transformation to Sub-range Distributions
	Indexing of Sub-Range Distributions
	Construction of Templates
	Mapping between Sub-ranges and Templates
	Compression of Indexing Results

	Range Distribution Query

	Applications
	Analysis of Local Statistics
	Feature Detection with Fuzzy Isosurfaces
	Distribution-based Similarity Search

	Quantitative Analysis
	Space Saving
	Query Response
	Performance Study

	Discussion
	Conclusion and Future Work

